Monthly drought prediction based on ensemble models
نویسندگان
چکیده
منابع مشابه
Wind Power Prediction by using Ensemble Models
We compare structural different methods of the artificial intelligence for wind power prediction modeling and build additionally ensembles of the models. As input variables for these prediction methods weather data of a numerical weather prediction model are used. The performance of the presented methods is compared to the predictions of the neural network based model.
متن کاملIterated Time Series Prediction with Ensemble Models
We describe the use of ensemble methods to build proper models time series prediction. Our approach extends the classical ensemble methods for neural networks by using several different model architectures. We further suggest an iterated prediction procedure to select the final ensemble members. This is an extension of well know the crossvalidation scheme for model validation.
متن کاملEnsemble classification based on generalized additive models
Generalized additive models (GAMs) are a generalization of generalized linear models (GLMs) and constitute a powerful technique which has successfully proven its ability to capture nonlinear relationships between explanatory variables and a response variable in many domains. In this paper, GAMs are proposed as base classifiers for ensemble learning. Three alternative ensemble strategies for bin...
متن کاملData-driven models for monthly streamflow time series prediction
C. L. Wu and K. W. Chau* 2 Dept. of Civil and Structural Engineering, Hong Kong Polytechnic University, 3 Hung Hom, Kowloon, Hong Kong, People’s Republic of China 4 5 *Email: [email protected] 6 ABSTRACT 7 Data-driven techniques such as Auto-Regressive Moving Average (ARMA), K-Nearest-Neighbors (KNN), and 8 Artificial Neural Networks (ANN), are widely applied to hydrologic time series predi...
متن کاملApplication of Gene Expression Programming and Support Vector Regression models to Modeling and Prediction Monthly precipitation
Estimating and predicting precipitation and achieving its runoff play an important role to correct management and exploitation of basins, management of dams and reservoirs, minimizing the flood damages and droughts, and water resource management, so they are considered by hydrologists. The appropriate performance of intelligent models leads researchers to use them for predicting hydrological ph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PeerJ
سال: 2020
ISSN: 2167-8359
DOI: 10.7717/peerj.9853